Berdnikov V. M., Abasova N. I., Petruhina V. A. Ispolzovanie mnogoparametricheskoi neironnoy seti dlya formirovaniya intervalnich otsenok dannyh [Using a multiparameter neural network to generate interval estimates of data]. Molodaya nauka Sibiri: ehlektronnyj nauchnyj zhurnal [Young science of Siberia: electronic scientific journal], 2021, no. 1. [Accessed 24/05/21]
The article discusses the practical application of a neural network for hydropower and water management systems. Various models of neural networks, their advantages and disadvantages for a specific subject area are analyzed. The work of a multiparameter neural network is described using practical examples, in particular, the formation of interval estimates in a hydroelectric power station reservoir
- Rosenblatt, F. Principles of neurodynamics: Perceptrons and the theory of brain mechanisms = principles of neurodynamics: perceptrons and the Theory of brain mechanisms. - Moscow: Mir, 1965 — - 480 p.
- Broomhead, D. S.; Lowe, David (1988)."Multidimensional functional interpolation and adaptive networks". Complex Systems. 2: 321-355.
- Carpenter, G. A. and Grossberg, S. (2003), Handbook of Brain Theory and Neural Networks, Second Edition (pp. 87-90). Cambridge, MA: MIT Press
- Goodfellow, Ian J.; Paget-Abadie, Jean; Mirza, Mihdi; Xu, Bing; Worde-Harley, David; Oskar, Sherjil; Courville, Aaron & Bengio, Yoshua (2014), Generative adversarial networks
- Kohonen T. (1989/1997/2001), Self — organizing maps, Berlin-New York: Springer-Verlag. First edition 1989, second edition 1997, third expanded edition 2001
- Hopfield, J. J., "Neural Networks and physical Systems with Emerging collective computing Abilities," Proceedings of the National Academy of Sciences, vol. 79, no. 8, pp. 2554-2558, April 1982.