THE ELECTRONIC SCIENTIFIC JOURNAL "YOUNG SCIENCE OF SIBERIA"

TECHNOLOGY FOR CREATING MULTIFACTOR AND FACTOR FORECAST MODELS OF INDICATORS OF THE TRANSPORTATION PROCESS BY RAIL

Authors: 
Receipt date: 
15.06.2020
Bibliographic description of the article: 

Krakovsky Y.M., Popova N.N. Technology for creating  multifactor and factor forecast models of indicators of the transportation process by rail. The electronic scientific journal "Young science of Siberia", 2020, no. 4(10). [Accessed 31/12/20] (in Russian)

Year: 
2020
Journal number: 
УДК: 
УДК 519.237.5
Article File: 
Abstract: 

The technology for creating multifactor and factor models of indicators of the transportation process by rail for generalized forecasting of cargo loading based on statistical and expert information, taking into account the scenario approach, is proposed. Generalized forecasting is based on three values of cargo loading with different weights: a) the value obtained by three-factor first-order model; b) the value obtained by factor model; c) point expert judgment. Weights are recommended to be obtained by the analytic hierarchy process using expert judgments. Twelve factor models for cargo loading, for wagon turnaround, for service speed, for locomotive productivity according to the data of transportation process on the Far Eastern Railway. Good practical adequacy of the obtained models is shown.

List of references: 
  1. Davaanyam Tamir, Krakovsky Y.M. Kompleksnoe prognozirovanie bazovyh pokazatelej perevozochnogo processa [Integrated forecasting of the main of indicators of transportation process]. Sovremennye tekhnologii. Sistemnyj analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2016, No 3 (51), pp. 179–184.
  2. Krakovsky Y.M., Dombrovsky I.A. Prognozirovanie pokazatelej gruzovyh perevozok Ulan-Batorskoj zheleznoj dorogi [Forecasting indicators of Ulaanbaatar railway freight traffic]. Sovremennye tekhnologii. Sistemnyj analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2013, No 4 (40), pp. 225–228.
  3. Krakovsky Y.M., Kargapol'cev S.K., Nachigin V.A. Modelirovanie perevozochnogo processa zheleznodorozhnym transportom: analiz, prognozirovanie, riski; [pod red. prof. Y.M. Krakovskogo] [Modeling of the railway transportation process: analysis, forecasting, risks] [Ed. by Y. M. Krakovsky]. St. Petersburg: «LITEO», 2018. 240 р.
  4. Luzgin A.N., Krakovsky Y.M. Prognozirovanie bazovyh pokazatelej perevozochnogo processa na osnove scenarnogo podhoda [Prediction of the basic indicators of the transportation process based on the scenario approach]. Prikladnaya informatika [Applied Informatics], 2017, Volume 12, No 2 (68), pp. 29–36.
  5. Nachigin V.A., Frolov V.F. Procedura vybora predpochtitel'nogo scenariya razvitiya perevozochnogo processa [Procedure for choosing a preferred scenario for the development of the transportation process]. Izvestiya Transsiba [Journal of Transsib Railway Studies], 2014, No 1, pp. 109–115.
  6. Nosko V.P. Ekonometrika [Econometrics]. M: Izdatel'skij dom «Delo», RANHiGS, 2011. Book.1. 672 p.
  7. Os'minin A.T., Mekhedov M.I., Mednikov D.V. Obespechenie interoperabel'nosti perevozok [Ensure interoperability of traffic]. ZHeleznodorozhnyj transport [Railway transport], 2019, No 7, pp. 11–17.
  8. Popova N.N., Krakovsky Y.M. Mnogofaktornoe prognozirovanie gruzooborota po dannym Dal'nevostochnoj zheleznoj dorogi [Multifactor forecasting of freight turnover according to Far Eastern Railway]. Materialy Desyatoj Mezhdunarodnoj nauchno-prakticheskoj konferencii «Transportnaya infrastruktura Sibirskogo regiona» [Materials of the Tenth International Scientific and Practical Conference "Transport infrastructure of the Siberian region"], 2019, pp. 337–341.
  9. Popova N.N., Krakovsky Y.M. Prognozirovanie gruzooborota s uchetom faktornyh modelej [Forecasting of freight turnover based on factor models]. Aktual'nye voprosy agrarnoj nauki [Actual issues of agricultural science], 2019, No. 32, pp. 63–69.
  10. Rozenberg E.N., Anoshkin V.V. Perspektivy rosta propusknoj sposobnosti uchastkov [Prospects for increasing the lines capacity]. ZHeleznodorozhnyj transport [Railway transport], 2020, No. 3, pp. 4-7.
  11. Saati T. Prinyatie reshenij. Metod analiza ierarhij. [Decision-making. Analytic hierarchy process]. M.: Radio i svyaz', 1993, 320 p.
  12. Sotnikov E.A., Mekhedov M.I., Holodnyak P.S. Intensifikaciya rosta zagruzhennyh napravlenij seti zheleznodorozhnyh dorog [Intensification of growth of busy directions of railway network]. ZHeleznodorozhnyj transport [Railway transport], 2020, No. 3, pp. 11–14.
  13. Fedorov Y.N. Povyshenie effektivnosti upravleniya holdingom «RZHD» za schet formirovaniya optimal'noj struktury organov regional'nogo upravleniya osnovnoj deyatel'nost'yu [Improving the management efficiency of the Russian Railways holding due to the formation of an optimal structure of regional administration of main activity]. Ekonomika zheleznyh dorog [Railway Economics], 2013, No. 11, pp. 41-46.
  14. Frolov V.F. Novye podhody k upravleniyu perevozochnym processom v usloviyah dinamichnogo izmeneniya vneshnej sredy [New approaches to the management of the transportation process in the conditions of dynamic change in the external environment]. ZHeleznodorozhnyj transport [Railway transport], 2014, No. 4., pp. 14-18.
  15. Maklygin N., Nachigin A., Krakovskiy Y. The Scenario Approach for Prediction of  Indicators Transportation Process. The Fifth International Symposium on Innovation and Sustainability of Modern Railway (ISMR-2016). Nanchang, China, October 20-21, 2016, pp. 620-623.